Designing of the Heating Process for Fiber- Reinforced Thermoplastics with Middle-Wave Infrared Radiators

نویسنده

  • B. Engel
چکیده

Manufacturing components of fiber-reinforced thermoplastics requires three steps: heating the matrix, forming and consolidation of the composite and terminal cooling the matrix. For the heating process a pre-determined temperature distribution through the layers and the thickness of the pre-consolidated sheets is recommended to enable forming mechanism. Thus, a design for the heating process for forming composites with thermoplastic matrices is necessary. To obtain a constant temperature through thickness and width of the sheet, the heating process was analyzed by the help of the finite element method. The simulation models were validated by experiments with resistance thermometers as well as with an infrared camera. Based on the finite element simulation, heating methods for infrared radiators have been developed. Using the numeric simulation many iteration loops are required to determine the process parameters. Hence, the initiation of a model for calculating relevant process parameters started applying regression functions. Keywords—Fiber-reinforced thermoplastics, heating strategies, middle-wave infrared radiator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersion of Love Wave in a Fiber-Reinforced Medium Lying Over a Heterogeneous Half-Space with Rectangular Irregularity

This paper concerned with the dispersion of Love wave in a fiber-reinforced medium lying over a heterogeneous half-space. The heterogeneity is caused by the consideration of quadratic variation in density and directional rigidity of lower half-space. The irregularity has been considered in the form of rectangle at the interface of the fiber-reinforced layer and heterogeneous half-space. The dis...

متن کامل

Love Wave Propagation in a Fiber-reinforced Layer with Corrugated Boundaries Overlying Heterogeneous Half-space

Love-type wave generation in a fiber-reinforced medium placed over an inhomogeneous orthotropic half-space is analysed. The upper and lower boundary surfaces of the fiber reinforced medium are periodically corrugated. Inhomogeneity of half-space is caused by variable density and variable shear modules. Displacement components for layer and half-space are derived by applying separable variable t...

متن کامل

Study of Wave Motion in an Anisotropic Fiber-Reinforced Thermoelastic Solid

The present investigation deals with the propagation of waves in the layer of an anisotropic fibre reinforced thermoelastic solid. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitude of displacements and temperature distribution were also obtained. Finally, the numerical solution was carried out for Cobalt material...

متن کامل

Improving Mechanical Properties by KENAF Natural Long Fiber Reinforced Composite for Automotive Structures

Natural fibers have recently become attractive to automotive industry as an alternative reinforcement for glass fiber reinforced thermoplastics. The best way to increase the fuel efficiency without sacrificing safety is to employ fiber reinforced composite materials in the body of the cars so that weight reduction can be achieved. Designing the structures with the focus on improvement aspects i...

متن کامل

An Analytic Study on the Dispersion of Love Wave Propagation in Double Layers Lying Over Inhomogeneous Half-Space

In this work, attempts are made to study the dispersion of Love waves in dry sandy layer sandwiched between fiber reinforced layer and inhomogeneous half space.Inhomogeneity in half space associated with density and rigidity and considered in exponential form. Displacement components for fiber reinforced layer, dry sandy layer and inhomogeneous half-space have been obtained by using method of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013